CO2 conversion (%)=([CO2]in-[CO2]out)/[CO2]in×100% | (1) |
CO selectivity (%)=[CO]out/([CO2]in-[CO2]out)×100% | (2) |
CH3OH selectivity (%)=[CH3OH]out/([CO2]in-[CO2]out)×100% | (3) |
CH3OH space-time yield=[CH3OH]out/mcat. | (4) |
Fig.1 The catalytic performances of CZA and M-CZA (M=Zr, Mg, In, Mo, and Mn) catalysts
Fig.2 Effect of reaction temperature on the catalyst performance of CZA and Mn-CZA catalysts
Fig.3 Space-time yields of methanol obtained at different temperatures on CZA and Mn-CZA catalysts
Fig.4 XRD patterns of CZA and M-CZA (M=Zr, Mg, In, Mo, and Mn) catalysts before and after reduction
表(biao)1 還(huan)原(yuan)前后催(cui)化劑晶粒(li)尺寸大小
Table 1 The particle size of catalyst before and after reduction
Fig.5 H2-TPR profiles of CZA and M-CZA (M=Zr, Mg, In, Mo, and Mn) catalysts
表2 催化劑還原峰(feng)頂(ding)溫度和耗氫(qing)量
Table 2 Peak temperature and hydrogen consumption of CZA and M-CZA catalysts
Fig.6 CO2-TPD profiles of CZA and M-CZA (M=Zr, Mg, In, Mo, and Mn) catalysts
表3 還原后(hou)改性(xing)CZA催化劑(ji)表面元(yuan)素(su)組成
Table 3 Surface element composition of modified CZA catalysts after reduction
圖7 還原后CZA和M-CZA (M=Zr, Mg, In, Mo和Mn)催化劑XPS譜圖(tu):(a) Cu 2p; (b) Cu俄(e)歇譜; (c) Zn 2p
Fig.7 XPS spectra of CZA and M-CZA (M=Zr, Mg, In, Mo, and Mn) catalysts after reduction: (a) Cu 2p; (b) Cu LMM; (c) Zn 2p
圖8 0.1 MPa和(he)240℃下(xia)CZA催(cui)化劑上原位紅外漫反射光譜
Fig.8 In situ DRIFT spectra on CZA catalyst obtained at 0.1 MPa and 240℃
圖9 0.1 MPa和240℃條件下(xia)Mn-CZA催化劑上原位紅外漫反射光(guang)譜
Fig.9 In situ DRIFT spectra on Mn-CZA catalyst obtained at 0.1 MPa and 240℃
Fig.10 Effect of HCOOH addition on the concentration of CH3O* and CH3OH on Mn-CZA catalysts
Fig.11 Comparison of CH3O* and CH3OH concentrations on CZA and Mn-CZA catalysts
掃一(yi)掃在手機上(shang)閱讀本文章